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The design of combinatorial mixture libraries should take account of a number of factors. This
paper describes the application of a genetic algorithm to optimizing the diversity of libraries
while minimizing the effort that will be needed to deconvolute the biological hits by mass-
spectroscopic techniques. It differs from previous applications of genetic algorithms to
combinatorial library design in that each chromosome encodes an entire library with the result
that properties of the library are optimized. Our method is such that it is easily extensible to
optimizing the distributions of any number of physical or other properties of the library. The
method allows for the combinatorial constraint inherent in mixtures that every substituent at
each diversity site must occur in combination with every substituent at every other site. We
present results showing that the genetic algorithm can produce good library designs in a timely
manner.

Introduction

When designing a combinatorial mixture library for
lead identification, it is desirable that the compounds
within that library be as diverse as possible, to fully
explore the scope of activity against the target. How-
ever the design of a library should take into account
many other factors, not least among them the effort
needed to deconvolute the mixtures once hits are
obtained. Factors such as the cost and availability of
reagents, for example, or the ranges of physical proper-
ties of the library products may also require optimiza-
tion. Furthermore, in the design of a mixture the
combinatorial constraint always applies, i.e., every
substituent at each position will occur in combination
with every substituent at all other positions. Each of
these additional considerations may mean that a certain
amount of possible diversity in a library has to be
sacrificed.
In this paper we present a method that specifically

addresses the trade-offs involved in designing a library
for both optimum diversity and efficient deconvolution.
However, this method also provides a framework into
which any number of additional factors may easily be
incorporated. The method is specifically aimed at
mixtures produced using methods such as mix-and-split
or competitive coupling in which the combinatorial
constraint applies. For other synthesis protocols such
as parallel synthesis, this constraint does not apply.
Individual compounds can be selected for synthesis in
these cases, and so other design methods may be
appropriate.

The Mixture Library Design Problem

Library Diversity. Several methods have been
proposed to quantify diversity.1-7 One approach to
producing diverse library products has been to ensure
that the sets of precursors used to construct the library
are as diverse as possible.4,8 If all suitable precursors
for a given diversity site are grouped on the basis of
some desirable features, such as distribution of potential

pharmacophore points, then selecting no more than one
from each group should ensure that the set is diverse.
To produce a diverse library it is therefore desirable to
ensure that every precursor is taken from a different
group.
A recent study has suggested that maximizing diver-

sity among the precursor sets may not necessarily give
the most diverse possible set of library products.9 An
alternative is to consider the diversity among the library
products themselves. This may be measured by enu-
merating the library products and either clustering
them and attempting to pick as few compounds as
possible from each cluster10 or using a cell-based
partitioning method11-13 and attempting to pick as few
compounds as possible from each cell.
Deconvolution. A number of solutions have been

suggested to the problem of deconvoluting the hits from
a mixture library. These include tagging beads with
various types of chemically or spectroscopically readable
labels or producing libraries on silicon chips whose
identities can later be determined by radiofrequency
scanning.14 Our method is designed to address the
problem of deconvolution when using mass-spectroscopic
techniques to identify the molecular ion of active
compounds.15 Once this information is known, selective
resynthesis and testing of some or all of the compounds
in the library with those molecular weights will be
required. Since it is desirable to keep this work to a
minimum, it is sensible to design a combinatorial library
to have the smallest possible number of compounds of
any one molecular weight, given the constraints of the
required size of the library and the availability of
suitable precursors.
For a given number of library products all having the

same molecular weight, deconvolution will be simplified
further if the substituents used at the diversity sites
have different molecular weights. It is therefore desir-
able to also minimize the substituent molecular weight
redundancies, for each given product molecular weight.
In a mix-and-split strategy for combinatorial synthe-

sis,16 the pools of compounds that result from the
addition of the final diversity site are often not mixed.
Since these pools are screened individually, the decon-X Abstract published in Advance ACS Abstracts, June 15, 1997.
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volution problem applies to each subpool separately;
however, the diversity optimization applies across the
library as a whole. A library design strategy must
therefore be able to suggest pools within each of which
there is the minimum product and substituent molec-
ular weight redundancy. At the same time the diversity
of the library should be optimized over all the pools.
It is important to note that the design requires the

optimization of the whole library, not selection of
individual library compounds, and thus requires the
consideration, and comparison, of all possible libraries
rather than all possible library compounds. In a com-
binatorial design it is, in any case, impossible to select
individual combinations of precursors without making
all other products containing those precursors.
Problem Size. The number of precursors that are

suitable for use in constructing a combinatorial mixture
library is often larger than the number that can reason-
ably be used. Hence, typical mixture library design
problems have huge search spaces, the sizes of which
are best illustrated by two of the examples to which we
have applied our method. The design of these libraries
is discussed in the results section of this paper.
In library I, two sites of diversity were available. A

reaction scheme for the production of this library is
given in Scheme 1. There were 360 commercially
available precursors compatible with the chemistry for
R1 and 259 for R2. There were therefore 93 240 possible
library product compounds. The design of this library
called for the production of 10 000 compounds by com-
bining 100 R1s with 100 R2s.
The number of ways of selecting k objects from n is

and so the number of possible libraries is

To put this number into perspective, the age of the
universe is approximately 1017 s and its size 10108 Å.3

Library II, for which a reaction scheme is shown in
Scheme 2, had three sites of diversity on a small
molecule core. In the existing inventory of precursors
available within Abbott at the time at which the library
was to be constructed, there were 53 suitable candidates
for R1 and R3 and 42 for R2. No fixed size was set for
this library. Instead, a maximum allowed redundancy
at any one molecular weight was specified and the
largest possible size library required. In this case
therefore, all combinations of picking between 1 and 53
compounds for R1, while picking between 1 and 42 for
R2 and 1 and 53 for R3, are allowed, giving ap-
proximately 10194 possible libraries each containing
between 1 and 117 978 compounds.
The problem size makes it impossible to tackle by

enumeration. For example, if 100 potential libraries
could be evaluated for their mass redundancy and
diversity in one CPU second, an exhaustive enumera-
tion of all possible solutions for library I would required
on the order of 10154 years.
In summary, library design is a complex problem,

requiring the optimization of a number of often compet-
ing factors, over a vast search space. Genetic algorithms
have been successfully applied to a wide range of such
problems in both chemical and nonchemical domains.17
A genetic algorithm is a computational technique that
mimics the processes of Darwinian evolution.17-19 A
potential solution to a problem is encoded in a repre-
sentation termed a chromosome. This is typically a
string of bits, integers, real numbers, or symbols each
of which is termed a gene. The genetic algorithm
operates on a population of these chromosomes that are
generated by assigning values to the genes in the
chromosomes, often at random. A fitness function

Scheme 1. Reaction Scheme for the Synthesis of
Example Library I

nCk ) n!
(n - k)!k!

360C100‚
259C100 ) 2.5 × 10164

Scheme 2. Proposed Reaction Scheme for the Synthesis
of Example Library IIa

a This is partly based on the scheme of Mayer et al.32
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measures how well adapted each chromosome is to its
environment. In our example this would equate to how
diverse the library represented by the chromosome is
and how easy it would be to deconvolute. Once an initial
parent population is generated, it is subjected to some
evolutionary processes to breed a new child population,
with the better adapted parents being allowed a greater
chance to produce children. As with natural evolution,
over successive generations the members of the popula-
tion become better adapted to their environment, and
thus better solutions to the problem in hand are
discovered.
There are two prerequisites to being able to apply a

genetic algorithm to a problem. The first is to be able
to choose a representation that allows every possible
solution to the problem to be encoded in a chromosome.
The second is that it must be possible to write a fitness
function to decode the chromosome and produce a score
that reflects the quality of that solution.

GALOPED - Genetic Algorithm for Library
Optimization for Efficient Deconvolution
We have developed a program, GALOPED, that applies a

genetic algorithm to the library design problem. The program
is implemented in C for Silicon Graphics UNIX workstations
using the SUGAL package.20 SUGAL implements a wide
range of different methods for each process in a genetic
algorithm and provides a mechanism for these to be optimized
in combinations. It requires the user to provide C code for
the fitness function, data entry, and results output and for
any nonstandard genetic algorithm operators to be used. The
package includes a MOTIF interface to allow parameter setting
and monitoring of the progress of the program. The interface
was extended to create windows for browsing the frequency
distributions and the chemical structures of the precursor sets
for each chromosome in a population.
Encoding Strategy. In our program each chromosome

represents a different potential library. Each is therefore
nominally split into a number of sections corresponding to the
number of diversity sites. The number of genes in each section
is equivalent to the number of available precursors for that
position. The genes are binary, a 1 indicating that the
precursor is to be used at that diversity site and a 0 that it is
not. A gene is said to be set if its value is 1 and unset if it is
0. A simple example of this representation is shown in Figure
1, in which there are three sites of diversity, with R1 having
four suitable precursors, A-D; R2 having two, E and F; and
R3 having three: G-I. This requires a 9-bit chromosome with
the first 4 bits representing the first diversity site and
specifically bit 1 representing the presence or absence of
precursor A in the library represented by that chromosome.
It is important to note that given only the gene positions of
the section boundaries, it is possible to decode a chromosome
to give the precursor combinations in the products that are
required by the fitness function.

Substituents that are specified to be included in all solutions
are not allocated a gene position in the chromosome, since the
chromosome represents choices that can be made. However
they are included when enumerating the substituent combina-
tions of the library products during the fitness function
evaluation.
In some library syntheses, a set of precursors is added to

more than one position simultaneously, and therefore the same
precursor set must be used at each of these positions. The
program allows one or more diversity positions to be fixed as
equal to another. In this case the repeated precursor set(s)
is(are) not represented in the chromosome but included in the
enumeration of products during the fitness function evaluation.
It should be noted that this encoding is different from other

genetic algorithm applications to combinatorial chemistry
which have been reported recently.21-23 In those studies a
single library product is encoded in each chromosome and a
population of individual library products is optimized rather
than a population of complete libraries.
A step-by-step procedure for the GALOPED program is as

follows:
1. Input substituent sets, diversity measurements, and

design criteria.
2. Generate an initial population of chromosomes by

random initialization.
3. Calculate the fitness for each chromosome.
4. Create the mating pool by biased random selection of

parents.
5. Create children by crossover and mutation of two

randomly selected parents from the mating pool.
6. Calculate the fitness of the children.
7. Insert (fitter) children into population by displacing

(weaker) parents.
8. If the maximum number of generations has not been

reached and there have been improvements in fitness, the last
n generations go to step 3.
9. Display results.
Each stage of the above procedure will now be described in

more detail.
Step 1. Program Input. When different structural classes

of precursor are being used at the same diversity site (for
example, both carboxylic acids and acid chlorides might be
compatible with the chemistry at a given R position), it is
necessary to transform the precursors into substituents so that
the correct molecular weights can be calculated and correct
pharmacophore point types assigned. A substituent is the
form in which a precursor will occur in the library products.
A number of programs may be used to achieve this trans-
formation.24-26

After producing the substituent lists, the necessary diversity
calculations must be performed. If diversity of the precursor
sets is to be considered, the substituents to be used at each
diversity site are separately grouped into 2D clusters or 3D
families. We do not currently combine 2D and 3D descriptors.
2D clusters are produced using MACCS structural keys

followed by Ward’s agglomerative clustering.10 Ward’s cluster-
ing makes use of pairwise Euclidean distances calculated from
the MACCS keys. We have conducted extensive validation
studies on these methods, looking at their ability to separate
known active and inactive structures in a number of datasets.
We have shown the methods to be able to achieve good
separations of structures into biohomogeneous clusters, i.e.,
those containing mostly structures of one activity class.10
Others have reached the same conclusions studying the same
types of descriptor.27
3D families are produced by identifying all potential phar-

macophore points in each precursor and then grouping to-
gether those having identical patterns of all pharmacophore
points, within a given distance tolerance, in the single con-
formation produced by the CONCORD program.8,28 This is a
partitioning procedure, rather than clustering, since every
compound with a particular pharmacophore pattern is as-
signed to the same family.
These cluster or family numbers are used by the fitness

function to assess the diversity of the subsets of precursors
selected for a particular library, since each 2D cluster or 3D

Figure 1. Chromosome encoding. The chromosome encodes
a representation of a library in a bit string. Each gene (bit)
corresponds to one precursor and is set to 1 if that precursor
is to be used in that library. Knowing the positions of the R
group boundaries allows the chromosome to be decoded to give
the library product combinations as shown.
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family contains structures with a common set of features. Our
validation studies have suggested that by selecting one from
each cluster or family, there is a good chance that all activity
classes present in the dataset as a whole will be represented
in the selected set.
If diversity is to be assessed over the product structures,

then all possible product structures are enumerated. For all
libraries of nontrivial size the 3D grouping procedure is too
slow to be used. Therefore, clusters are produced using
MACCS keys and Ward’s agglomerative clustering. Due to
the time requirements of the clustering algorithm, there is a
practical limit of around 200 000 library products using this
method. As an alternative we are currently investigating the
use of cell membership numbers produced using the Diverse-
Solutions software11 which, initial experiments indicate, should
allow sets of several million structures to be processed.
Input to the program consists of a list of named substituents

with structures in SMILES format, each with an indication
of its R position, group number, and whether it must be
included in all suggested solutions. The substituent structures
are necessary to allow browsing of the chosen sets once the
design is finished. Properties of the products, such as cluster
or cell numbers, are indexed using composite names formed
from concatenation of the precursor names to allow their
lookup by the fitness function. A number of other parameters
that must be defined by the user are discussed in subsequent
sections.
Step 2. Initializing the Population. A fixed size library

design implies that a fixed number of genes must be set in
each section of the chromosome in the final solution. To allow
this, user-defined upper and lower bounds may be set on the
number of genes within each section. A chromosome gener-
ated by any genetic operator that breaks these bounds is
disallowed. Once the lower bound is set to the required
number of substituents, the fitness function has the effect of
driving the chromosomes toward solutions containing this
number of genes per section, since the simplest way to relieve
excess redundancies is to use fewer substituents. Chromo-
somes with more than the minimum number of bits but less
than the upper bound are permitted in the population to allow
the operators to produce more valid chromosomes than would
otherwise be possible and to allow more diversity among the
solutions to be maintained while the population is being
optimized.
For library designs with no fixed sizes, the upper and lower

bounds are useful to reduce the search space. This they do
by preventing consideration of solutions that greatly exceed
the frequency cutoffs or have so few substituents as to be
uninteresting. In this case the requirement to include as many
bits as possible prevents the fitness function from driving the
number of genes toward the lower bound.
Each chromosome may be initialized by picking a different

random number of genes between the upper and lower bounds
to be set in each section of each chromosome and then
randomly selecting gene positions until that number of genes
has been set.
A reviewer of this paper suggested that there may be an

advantage to biasing the initialization toward diverse substit-
uents, in cases in which the diversity of the substituents rather
than the products is being optimized. This has been imple-
mented by selecting a random number of genes between the
upper and lower bounds, as before. Gene positions are again
selected at random to be set, but this time a gene position is
disallowed if another representing a substituent from the same
cluster or family has already been set. If this is the case, it is
left unset and the next random choice examined. A population
size of around 100 is typically used.
Step 3. Fitness Function. The fitness function consists

of a number of parts, each of which optimizes a different aspect
of the library: the molecular weight/formulae redundancy, the
substituent molecular weight redundancies, the number of
compounds, and the diversity.
The method of evaluating the redundancy of the library is

dependent on the type of mass spectroscopy to be used in the
assay stage. For low-resolution MS, molecular weights are
treated as integral. For a high-resolution experiment, it is

considered sufficient that the molecular formulae of the
products not be redundant, so the number of occurrences of
each unique formula is counted in this case.
To evaluate the redundancy among molecular weights (or

molecular formulae), the chromosome must first be decoded
to identify the library products. The library products encoded
in a chromosome may be enumerated by taking the substit-
uents corresponding to every set gene in the chromosome
section for R1 in combination with every set gene in R2 in
combination with every set gene in R3, etc. If the library
synthesis strategy is to not mix the final position, then all
combinations are taken over the first N - 1 sections rather
than all N sections, since it is the frequency redundancies
within each pool that are of concern. The molecular weight
or formula for each substituent is calculated during the initial
data loading so that the products may be quickly calculated
by summing those of the relevant substituents; a constant may
be added to take account of a core, although this is not
necessary for the score. A frequency count of each unique
weight or formula is kept over all the library products. Note
that is it not necessary to construct the actual structures of
the library products but rather simply to sum together the
weights or formulae of the substituents.
To produce a redundancy score for the library, the total

number of molecular weight redundancies over a user-defined
cutoff is summed across the distribution, to give the excess
frequency (see Figure 2). After some experimentation it was
decided to use the squares of the individual excess frequencies
at each molecular weight/formula. This tends to flatten the
whole frequency distribution by ensuring, for example, that a
distribution in which two separate molecular weights have an
occurrence one greater than the cutoff is more favorable than
one in which one weight has an excess frequency of two and a
second of zero.
A score for the substituent molecular weight redundancies

is produced in a similar fashion. For each product molecular
weight a separate frequency distribution is calculated for all
the substituents in the library compounds having that molec-

Figure 2. Calculation of excess frequency of molecular weight
for scoring a chromosome. A frequency distribution of the
number of occurrences of library products with each molecular
weight is calculated. The total number of occurrences over a
user-defined cutoff is calculated across the distribution.
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ular weight. A separate score for each of these, again based
on excess frequency of a second user-defined cutoff, is calcu-
lated and the mean score taken over all the product molecular
weights.
The diversity of the library encoded in a single chromosome,

when judged by the individual substituent sets, is assessed
by considering the number of times each 3D family or 2D
cluster occurs in each of the sections of the chromosome. These
diversity calculations are conducted separately on each R
position. However, it would also be possible to combine the
precursor sets for all positions and cluster or partition on one
common chemical space.
In the library design problems to which the 3D diversity

measure has so far been applied, the number of families
present in a set of precursors has always exceeded the number
of substituents required in that position in the library design.
In this case a simple diversity score can be produced for each
section of the chromosome by imposing a penalty related to
the number of repeated occurrences of any given family or
cluster. At best the number of families that could be repre-
sented in a section of a chromosome is equal to the number of
genes set in that section, so the penalty score is based on the
ratio of the number of repeated families to the number of bits
set. The mean penalty score is taken across all sections to
produce a diversity score for the chromosome. Scoring has to
be normalized by the number of set genes in each to avoid
biasing the diversity score by the number of precursors
selected. Without this normalization the algorithm will tend
to reduce family repeats by reducing the number of precursors
selected. Note that if subsequent design problems arise in
which there are fewer groups than required substituents, it
will be straightforward to devise a score based on the evenness
of the frequency distribution of group numbers across the
selected substituent set.
If the objective is to assess the diversity of the products, a

frequency distribution of the cluster numbers or cell numbers
is constructed for all the library products represented in the
chromosome. Given a user-defined acceptable cluster or cell
redundancy, a score is calculated for the excess frequency using
the method described above for the molecular weight distribu-
tions.
As was the case for library II, it is sometimes required to

maximize the number of products in a library, while keeping
the deconvolution problem within acceptable bounds. In this
case a penalty score is calculated by taking the mean across
all sections of the chromosome of the square of the number of
unset genes in each section.
Having produced a score for each factor in the optimization,

a weighted mean of these component scores is taken to be
returned as the fitness of the chromosome. The relative
weights on each individual factor are user-defined and can be
adjusted to place more emphasis on some aspect or aspects of
a given design problem.
Step 4. Selection. A mating pool of size equal to the

required number of replacements for a generation is created
by roulette wheel selection, giving a greater chance to more
fit members of the population to enter the mating pool. Rather
than use the raw scores for this selection, our preliminary
experiments showed it to be more effective to base the selection
on rank.29 The population is ranked according to the scores,
and selection for entry into the mating pool is based on a
function of the rank rather than the score itself. Experiment
showed both linear and nonlinear rankings to be equally
useful. In the former the normalized fitness is a linear
function of the rank; in the latter the spacing is geometric.
Step 5. Reproduction. Crossover is the genetic algorithm

operator which swaps genetic material between parents to
produce children. Two parents are first selected at random
from the mating pool to produce children. For each gene in
child 1, uniform crossover30 selects randomly whether that gene
will be inherited from parent 1 or parent 2; child 2 inherits
the corresponding genes from the other parent. Two-point
crossover selects two gene positions in the parents. Child 1
inherits the genes between these positions from parent 2 and
outside them from parent 1. Once again, child 2 is the
complement of child 1. In preliminary experiments uniform

crossover was generally found to be more successful than two-
point crossover. A crossover rate of around 0.8 is used,
meaning that having selected two parents there is an 80%
chance that crossover will be applied and a 20% chance that
the parents will pass into the child pool directly. Mutation
by simple inversion is applied to the children produced. Genes
are selected at random, typically at a rate of around 1 or 2
genes/chromosome, and the bit flipped from 1 to 0 or vice versa.
Step 7. Replacement. The genetic algorithm has been

run using both generational replacement and steady-state
replacement. In the former, one parent generation gives rise
to a whole child generation, and the parent generation is then
either conditionally or unconditionally replaced by its children.
In the latter case, as soon as a single child is produced, it is
then conditionally or unconditionally inserted into the genera-
tion, and so genetic material from the child is immediately
available to influence the production of the next child, which
it would not be in the former. Our initial experiments showed
that while generational replacement occasionally gives better
solutions, the steady-state method gives much faster conver-
gence and answers which are never too much worse than
generation replacement.
Experiment showed conditional replacement to be most

effective; that is, child chromosomes only enter the population
if they are an improvement on existing members of the
population, meaning that weaker members are replaced at
each stage. Elitism is used to unconditionally carry forward
the best member of each generation into the next.

Library Design Results

Library I, discussed in the introduction and shown
in Scheme 1, had two sites of diversity. The first
substituent position, R1, was produced from carboxylic
acids, chloroformates, and amines and the second, R2,
from carboxylic acids, aldehydes, and carbamoyl chlo-
rides. A search of the Available Chemicals Directory
(ACD),31 produced 360 precursors compatible with the
chemistry for R1 and 259 for R2. There are therefore
93 240 possible library product compounds. The design
of this library called for the production of 10 000
compounds by combining 100 R1s with 100 R2s. De-
convolution was to be by high-resolution experiment;
therefore, the minimum redundancy was required for
every unique molecular formula. Diversity was as-
sessed on the precursor sets, and so precursors were
transformed into substituents, and 3D families, based
on common patterns of 3D pharmacophore points, were
precomputed for each R position separately yielding 203
families for R1 and 155 families for R2.
The following results are for the genetic algorithm

running in steady-state mode with a population of 100.
The chromosome was defined to allow 100-150 genes
for both R1 and R2. The frequency cutoff was set at 2;
i.e., a frequency of 3 contributes 1 to the total excess
frequency. Equal weigh was placed on diversity and
deconvolution in the fitness function. Random initial-
ization was used for the chromosomes.
Figure 3 shows the variation of total excess frequency

(TEF) and the total number of families present for the
best chromosome over a typical run. Note that the TEFs
quoted in this section are not squared although the
squared value was used by the fitness function. Figure
4 shows the molecular formula frequency distributions
for generations 1 and 1000 and at convergence, which
for this run was after 392 000 generations. On average,
genes with fewer bits have a lower TEF score, so these
come to dominate the population after the first few
thousand generations. Following rapid improvement to
the molecular frequency distribution, the remainder of
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the run produces small improvements in the TEF while
increasing the diversity of the library in terms of the
number of different families represented by the 100
precursors at each diversity site. Over all 17 000 unique
molecular formulae, only 23 exceed the cutoff after the
program converges.
The typical run time for the program, using a Silicon

Graphics Indigo2 running at 250 MHz, is approximately
0.05 s CPU/generation in steady-state mode, of which

over 0.04 s CPU is spent in the fitness function. The
total time to convergence for this library was ap-
proximately 5.5 h. Examination of Figure 3 suggests
that reasonable approximate solutions can be obtained
in a much shorter time since the most rapid improve-
ment to the score comes early in the run. Furthermore,
in cases where no good solution can be found, possibly
because the frequency cutoffs have been set unrealisti-
cally low, this is often apparent early in the run when
little improvement will be made during the first genera-
tions. In this case the program can be terminated and
rerun with adjustments to the GA parameters and
frequency cutoffs.
Since the GA method is stochastic, rerunning the

program with the same parameters will produce differ-
ent results. As long as the program is not converging
prematurely, it should be expected that the final solu-
tions will have approximately equal fitness scores,
however. Table 1 shows the TEF and number of
families for the best chromosome at convergence for 10
runs of the program varying only the seed to the random
number generator. The table shows that there is little
variation in the TEF (between 20 and 26) or in the total
number of families represented in R1 (74-81) or R2 (77-
84).
The effects of initializing the chromosomes for maxi-

mum diversity rather than entirely at random are
shown in Table 2. These runs have produced a similar
outcome, although with more diversity at the expense
of a slightly worse deconvolution profile. Typically in
the first generation of these runs, the TEF scores were
in the 3000-5000 range, and so the final TEFs of these
runs and those with the random initialization are seen
to be very similar. The number of generations to
convergence was similar in both sets of runs. Finding
similar outcomes with two different types of starting

Figure 3. Evolution of library I. The total excess frequency
(TEF) of molecular formulæ and the total number of 3D
families present in the precursor sets for R1 and R2 at each
generation are shown.

Figure 4. Evolution of library I. The molecular formula
frequency distribution is given for the best chromosome in the
first, one-thousandth, and last generations.

Table 1. Variation in the Components of the Fitness Function,
Total Excess Frequency (TEF) of Molecular Formulae and
Number of 3D Families, over 10 Runs for Library I, Resulting
from the Stochastic Nature of the Genetic Algorithma

families

run TEF R1 R2

1 23 78 84
2 25 81 77
3 20 81 80
4 25 79 77
5 22 80 78
6 26 74 78
7 23 79 79
8 24 81 79
9 25 81 80
10 23 81 80

a Only the seed to the random number generator is changed
between runs.

Table 2. Variation in the Total Excess Frequency (TEF) of
Molecular Weight and Number of 3D Families over Six Runs of
Library I, Using Initialization of the Population for Maximum
Diversity

families

run TEF R1 R2

1 32 87 86
2 28 84 83
3 27 90 82
4 33 83 86
5 36 85 86
6 28 88 83
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points is a further indication that the GA is not
converging prematurely on solutions far from the global
minimum.
Since the chromosomes are initialized for maximum

diversity in these cases and only changed to satisfy the
molecular formula considerations, it can been seen that
approximately 10-20% of the possible diversity at each
R position has had to be sacrificed to satisfy the
deconvolution constraint.
For library II (see Scheme 2), three sites of diversity

were available on a small molecule core. Positions R1
and R3 were derived from aldehydes and R2 from amino
acids. In the existing inventory of precursors available
within Abbott at the time at which the library was con-
structed, there were 53 suitable candidates for the alde-
hydes and 42 for the amino acids. The library was not
to be of a predetermined size, but instead, a maximum
allowed redundancy of 100 was specified for any one
molecular weight and the largest possible size library
required. In addition, within any one product molecular
weight a limit of 10 redundancies at any one substituent
weight was imposed. The precursors had already been
selected for diversity so there was no need to optimize
the number of families present in this case. After ex-
periment, weights were picked for the different parts of
the scoring function to ensure that the TEF was con-
sistently at or very close to 0 and that the sum of the
monomer TEFs was always 0. These weights were 10:
2:1 for monomer TEF:products TEF:library size. Upper
and lower bounds of 10 and 50 monomers were applied
to positions 1 and 3 and 10 and 42 to position 2.
Figure 5 shows the molecular weight distribution of

the best chromosome at generation 1 and at conver-
gence. Since some chromosomes were generated with
very few bits, some libraries in generation 1 have an
extremely low TEF; however, they contain very few
compounds and so have a poor score due to this latter
factor. Table 3 shows the variation in TEF and total
number of compounds in the library over 10 runs
varying only the seed to the random number generator.
The results suggest the optimal library size to be
between 21 672 and 24 300. In addition it can be seen
that the best results are always obtained using a large
number of precursors at R1 and R3 relative to the total
available (43-45 of 53) and a much smaller number at
R2 (11 or 12 of 42). This is an indication that there is
most molecular weight redundancy in the precursor set
for R2 and that the best way to produce a larger library
while staying within the deconvolution limits would be
to identify more candidate precursors for R2.
A final example, library III, required evaluation of the

diversity of library products rather than the substituent
sets. Two diversity sites were available on an asym-
metric core with the same set of 315 acids from which
to choose at both positions. The chemistry shown in
Scheme 1 was used to construct this library. The library
size was to be 100 × 100. The 99 225 possible library
products had 13 839 unique molecular formulae and
were clustered, using Ward’s agglomerative clustering
andMACCS 2D fingerprints, into 10 000 clusters so that
the most diverse set possible would have no more than
one product from each cluster. In the fitness function
equal weight was placed on the cluster and molecular
formula redundancies. Initialization was by random
assignment. Figure 6 shows the frequency of occurrence

of each cluster number in the products for the best
chromosome in generation 1 and at convergence, ap-
plying a redundancy cutoff of 4. Figure 7 shows the
molecular formulae redundancies for the same chromo-
some, applying a cutoff of 3. Table 4 shows frequency
counts for the total number of occurrences of each
cluster size. Between generation 1 and convergence the

Figure 5. Integral molecular weight frequency distribution
of the best chromosome in the first and last generations for
library II.

Table 3. Variation in the Number of Precursors at Each
Diversity Position and the Total Number of Compounds in the
Library over 10 Runs for Library IIa

run R1 R2 R3 total compounds

1 45 12 45 24 300
2 44 11 45 21 780
3 43 12 42 21 672
4 43 12 44 22 704
5 43 12 45 23 220
6 45 11 46 22 770
7 44 12 43 22 704
8 43 12 43 22 188
9 43 12 44 22 704
10 44 12 44 23 232

a Only the seed to the random number generator varies between
the runs.
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number of clusters represented many times is greatly
reduced, while the number of clusters represented
between zero and two times is increased, indicating an
increase in diversity and also coverage. At convergence
there are 3835 clusters not covered by compounds in
the library and 5860 unrepresented molecular formulae.
The total diversity that has had to be sacrificed both to
the combinatorial constraint and to the deconvolution
criteria is therefore seen to be just under 40% of the
theoretical maximum (i.e., 3800 of 10 000 clusters). The
variation in the two TEF statistics over five runs is
shown in Table 5. The first run in this table is the one
discussed above. Once again there is little variation in

the overall diversity or molecular formula redundancy
among the solutions.
Since the product diversity is being assessed rather

than that of the substituents, it is not possible to
initialize the chromosomes for maximum diversity.
However, an initialization biased toward diversity was
investigated in which the substituents were clustered,
using MACCS keys and Ward’s clustering, and chro-
mosomes initialized by selecting no more than one
member of any cluster in any chromosome. Over five
runs there was no difference between the final product
cluster TEFs or molecular formula TEFs for these runs
and for those which started with random initialization.

Discussion

The GALOPED method permits the design of combi-
natorial mixture libraries that simultaneously meet a
number of design criteria. Efficient deconvolution of
active compounds by mass spectroscopy is allowed for
by designing libraries with the minimum redundancy
of molecular weights or molecular formulae and option-

Figure 6. Cluster frequency distribution for the library
products in the best chromosome of the first and last genera-
tions for library III.

Table 4. Evolution of the Diversity Score for Library IIIa

cluster size generation 1 convergence

0 4794 3835
1 2017 3404
2 1689 1913
3 784 633
4 406 205
5 146 9
6 83 1
7 49 0
8 19 0
9 8 0
10 3 0
11 1 0
12 0 0
13 1 0

a The number of clusters of each cluster size is given for the
solution encoded by the best chromosome in the first and last
generations. Larger clusters indicate more redundancy among the
library products. Under-representation of small clusters indicates
a lack of coverage.

Figure 7. Molecular formula frequency distribution for the
best chromosome in the first and last generations for library
III.

Table 5. Variation in the Total Excess Frequency (TEF) of the
Clusters and Molecular Formulae over Five Runs of Library III
Changing Only the Seed to the Random Number Generator

TEF

run cluster molecular formula

1 10 13
2 20 15
3 14 13
4 11 12
5 17 13
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ally minimum redundancy among substituent molecular
weights at any one product molecular weight. Diversity
among the library products is either accounted for
directly from product cluster numbers or based on a
selection of precursors that maximizes the number of
different pharmacophore point patterns present among
each set of substituents. There are several advantages
to the genetic algorithm method:
It is very fast and needs only to examine a tiny

fraction of all potential libraries to find satisfactory
solutions. In library I for example, under 400 000 of
the possible 10164 solutions are considered. It is, of
course, not possible to say how close the program may
come to an optimal solution since this would require the
enumeration of all possible libraries. However, it seems
clear from examining the solutions present in the initial
population of any run that it would not be possible to
find good solutions simply by randomly generating
possible libraries. Given the types of chemistry cur-
rently being developed for solid support and the re-
sources of the Available Chemicals Directory, it is easy
to imagine that much larger candidate sets of precursors
than those given in the examples in this paper may need
to be processed. For example, a selection from 1000 ×
1000 × 1000 choices may not be unrealistic. This
increase in size on its own should not impose a limita-
tion on the method. Indeed for a fixed final library size,
more candidates at each position might allow for more
choices when attempting to maximize the diversity.
Other factors will be more important to the speed of
convergence of the algorithm. The size of the final
design library will affect the speed of the fitness function
since all possible substituent combinations have to be
enumerated and evaluated. A second factor will be the
amount of variability available in the products. If
unrealistic cutoffs for cluster and molecular weight
redundancy are set in relation to the molecular weight
and cluster profiles of all potential library products, then
convergence on good solutions will be much more
computationally difficult to achieve.
The method is able to optimize a number of often

competing factors simultaneously, and it is readily
extensible to include new design factors. The fitness
function is independent of the searching algorithm and
is the only part of the program which has knowledge of
the problem domain. This means that it is straightfor-
ward to modify the former without affecting the latter.
We have demonstrated optimizing the diversity of either
the precursor sets or the product structures. However,
any other properties of either could equally well be
considered instead of, or in addition to, diversity. One
can imagine many properties which might be optimized,
for example, physical properties such as log P or the
calculated affinity of the library products for a particular
receptor. In addition it is equally simple to write
functions to maximize the spread of properties or confine
them to a required range. The only restriction to the
use of library product properties is that there must be
sufficiently few that they can be enumerated and the
properties calculated. While one could imagine calcu-
lating product properties on-the-fly for only those
structures which are included in any chromosome,
analysis of many GALOPED runs suggests that almost
all possible library products will be examined at least
once. There would therefore be little to be gained from

on-the-fly enumeration for our current examples. For
much larger libraries it may be that a lower percentage
of all possible library products would appear in any
chromosome, in which case on-the-fly enumeration may
become advantageous. However, the speed of enumera-
tion of the required properties would be a limiting factor
on their use with very large virtual libraries, and we
may have to be content with simultaneously optimizing
properties of the precursor sets in these cases.
The method can provide many different solutions to

a problem from which the combinatorial chemist can
choose. These might be either different chromosomes
from the same population or the best chromosome from
many populations obtained running the program several
times. Table 6 shows, for the best five different chro-
mosomes in a single run of library III, the number of
precursors in common between each pair of solutions.
Above the diagonal are the values for position R1, below
the diagonal for R2. The suggested libraries are differ-
ent by only one or two precursors, showing that the
solutions in a single run represent slight variations on
a common theme. Table 7 shows the equivalent results
for the best chromosome over five separate runs of
library III. In contrast to the results in Table 6, this
has resulted in the production of very different solutions,
albeit with approximately equal fitness. In either
position any pair of solutions only has approximately
one-half of the precursor sets in common. Structures
of the precursor sets selected in these five runs are
provided as Supporting Information.

Conclusions
The method we have described in this article allows

us to design combinatorial mixture libraries optimized
for biological screening for lead identification. It also
provides the framework for the design of libraries to
meet any calculable optimization function.

Supporting Information Available: Chemical structures
of the precursor sets selected in five runs referred to in Table
7 (70 pages). Ordering information is given on any current
masthead page.
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